Solution to Math4230 Tutorial 10

1. Consider MC/MC framework, assuming that w^* is finite, and M is convex and closed. Show that $q^* = w^*$.

Solution:

We prove this result by showing that all the assumptions of MC/MC Strong Duality (Prop. 4.3.1) are satisfied. By assumption, $w^* < \infty$ and the set \overline{M} is convex. Therefore, we only need to show that for every sequence $\{u_k, w_k\} \subset M$ with $u_k \to 0$, there holds $w^* \leq \liminf_{k \to \infty} w_k$.

Consider a sequence $\{u_k, w_k\} \subset M$ with $u_k \to 0$. If $\liminf_{k\to\infty} w_k = \infty$, then we are done, so assume that $\liminf_{k\to\infty} w_k = \tilde{w}$ for some scalar \tilde{w} . Since $M \subset \overline{M}$ and \overline{M} is closed by assumption, it follows that $(0, \tilde{w}) \in \overline{M}$. By the definition of the set \overline{M} , this implies that there exists some \overline{w} with $\overline{w} \leq \tilde{w}$ and $(0, \overline{w}) \in M$. Hence we have

$$w^* = \inf_{(0,w)\in M} w \le \bar{w} \le \tilde{w} = \liminf_{k \to \infty} w_k,$$

proving the desired result and showing that $q^* w^*$.

- 2. Consider MC/MC framework and assume $w^* > -\infty$, \overline{M} is convex and $0 \in \operatorname{ri}(D)$, where $D = \{u | \text{ there exists } w \in \mathbb{R} \text{ with } (u, w) \in \overline{M}\}$. Here Q^* is the set of optimal solutions of the max crossing problem. Show that (a) $(\operatorname{aff}(D))^{\perp} \subset L_{Q^*}$, where L_S is the lineality space of the set S;
 - (b) $R_{Q^*} \subset (\operatorname{aff}(D))^{\perp}$, where R_S is the recession cone of the set S;
 - (c) Show that \tilde{Q} is compact, where $\tilde{Q} = Q^* \cap (\operatorname{aff}(D))^{\perp}$.

Solution Please refer to proof of Proposition 4.4.2 in Appendix.

3. Considering MC/MC framework, assuming that $w^* < \infty$, and M is closed and convex, does not contain a halfline of the form $\{(x, w + \alpha) | \alpha \leq 0\}$. Show that

$$f(x) = \inf\{w | (x, w) \in M\}, \quad x \in \mathbb{R}^n$$

is closed.

Solution To show that f is closed, we argue by contradiction. If f is not closed, there exists a vector x and a sequence $\{x_k\}$ that converges to x and is such that

$$f(x) > \lim_{k \to \infty} f(x_k).$$

We claim that $\lim_{k\to\infty} f(x_k)$ is finite, i.e., that $\lim_{k\to\infty} f(x_k) > -\infty$. Indeed, by Nonvertical Hyperplane Theorem (Prop. 1.5.8), the epigraph of f is contained in the upper halfspace of a nonvertical hyperplane of \mathbb{R}^{n+1} . Since $\{x_k\}$ converges to x, the limit of $f(x_k)$ cannot be equal to $-\infty$. Thus the sequence $(x_k, f(x_k))$, which belongs to M, converges to $(x, \lim_{k\to\infty} f(x_k))$ Therefore, since M is closed, $(x, \lim_{k\to\infty} f(x_k) \in M$. By the definition of f, this implies that $f(x) \leq \lim_{k\to\infty} f(x_k)$, contradicting our earlier hypothesis.

Appendix

Proof of Proposition 4.4.2:

Proof: By Prop. 4.4.1, q^* is finite and Q^* is nonempty. Since q is concave and upper semicontinuous (cf. Prop. 4.1.1), and $Q^* = \{\mu \mid q(\mu) \ge q^*\}$, it follows that Q^* is convex and closed. We will first show that the recession cone R_{Q^*} and the lineality space L_{Q^*} of Q^* are both equal to $(aff(D))^{\perp}$ [note here that aff(D) is a subspace since it contains the origin]. The proof of this is based on the generic relation $L_{Q^*} \subset R_{Q^*}$ and the following two relations

$$\left(\operatorname{aff}(D)\right)^{\perp} \subset L_{Q^*}, \qquad R_{Q^*} \subset \left(\operatorname{aff}(D)\right)^{\perp},$$

which we show next.

Let d be a vector in $(aff(D))^{\perp}$, so that d'u = 0 for all $u \in D$. For any vector $\mu \in Q^*$ and any scalar α , we then have

$$q(\mu + \alpha d) = \inf_{(u,w)\in\overline{M}} \{(\mu + \alpha d)'u + w\} = \inf_{(u,w)\in\overline{M}} \{\mu'u + w\} = q(\mu),$$

so that $\mu + \alpha d \in Q^*$. Hence $d \in L_{Q^*}$, and it follows that $(\operatorname{aff}(D))^{\perp} \subset L_{Q^*}$. Let d be a vector in R_{Q^*} , so that for any $\mu \in Q^*$ and $\alpha \ge 0$,

$$q(\mu+lpha d) = \inf_{(u,w)\in\overline{M}}ig\{(\mu+lpha d)'u+wig\} = q^*.$$

Since $0 \in \operatorname{ri}(D)$, for any $u \in \operatorname{aff}(D)$, there exists a positive scalar γ such that the vectors γu and $-\gamma u$ are in D. By the definition of D, there exist scalars w^+ and w^- such that the pairs $(\gamma u, w^+)$ and $(-\gamma u, w^-)$ are in \overline{M} . Using the preceding equation, it follows that for any $\mu \in Q^*$, we have

$$egin{aligned} &(\mu+lpha d)'(\gamma u)+w^+\geq q^*, &orall \, lpha\geq 0, \ &(\mu+lpha d)'(-\gamma u)+w^-\geq q^*, &orall \, lpha\geq 0. \end{aligned}$$

If $d'u \neq 0$, then for sufficiently large $\alpha \geq 0$, one of the preceding two relations will be violated. Thus we must have d'u = 0, showing that $d \in (\operatorname{aff}(D))^{\perp}$ and implying that

$$R_{Q^*} \subset \left(\operatorname{aff}(D)\right)^{\perp}.$$

This relation, together with the generic relation $L_{Q^*} \subset R_{Q^*}$ and the relation $(\operatorname{aff}(D))^{\perp} \subset L_{Q^*}$ proved earlier, shows that

$$\left(\operatorname{aff}(D)\right)^{\perp} \subset L_{Q^*} \subset R_{Q^*} \subset \left(\operatorname{aff}(D)\right)^{\perp}.$$

Therefore

$$L_{Q^*} = R_{Q^*} = \left(\operatorname{aff}(D)\right)^{\perp}.$$

We now use the decomposition result of Prop. 1.4.4, to assert that

$$Q^* = L_{Q^*} + (Q^* \cap L_{Q^*}^{\perp}).$$

Since $L_{Q^*} = (\operatorname{aff}(D))^{\perp}$, we obtain

$$Q^* = \left(\operatorname{aff}(D)\right)^{\perp} + \tilde{Q},$$

where $\tilde{Q} = Q^* \cap \operatorname{aff}(D)$. Furthermore, by Prop. 1.4.2(c), we have

$$R_{\tilde{Q}} = R_{Q^*} \cap R_{\mathrm{aff}(D)}.$$

Since $R_{Q^*} = (\operatorname{aff}(D))^{\perp}$, as shown earlier, and $R_{\operatorname{aff}(D)} = \operatorname{aff}(D)$, the recession cone $R_{\tilde{Q}}$ consists of the zero vector only, implying that the set \tilde{Q} is compact.

From the formula $Q^* = (\operatorname{aff}(D))^{\perp} + \tilde{Q}$, it follows that Q^* is compact if and only if $(\operatorname{aff}(D))^{\perp} = \{0\}$, or equivalently $\operatorname{aff}(D) = \Re^n$. Since 0 is a relative interior point of D by assumption, this is equivalent to 0 being an interior point of D. **Q.E.D.**